
1

Peter Arrenbrecht, codewise.ch
peter.arrenbrecht@gmail.com

Literate Testing



Some of us teach them, too

2

Verifies

And we all test them

We all design APIs

Refines



Tutorials and Examples

This talk is about

• writing tutorials,

• with lots of tested examples

• and how this improves the quality of your 
APIs



Writing Tutorials Buys You
• Focus on users and their needs

– Use cases, stories

– Descend from on high

• Broadens view
– Interplay of components

– Entire use cases

• Invites cooperation
– Reviewers, potential users

• Discourages bells and whistles
– They all have to be explained



Giving Examples Buys You

• Consistent and convincing terminology

• Concise user code
– Need a simplified API atop a lower-level one?

• Usage as intended
– Correct and optimal
– Similar code easier to maintain
– Might be easier to refactor later



Testing Examples Buys You

• Completeness
– No hand waving, no shortcuts

• Maintainability
– Refactor text around examples too
– Restarts the cycle of reflection induced by focus 

on tutorials

• Side benefits (not for your API as such)
– No broken examples ever
– Important set of tests



Real-Life Experience

• Excel to JVM Compiler 
(http://formulacompiler.org/)

• Extensive tutorial online
– Led to layered API

– Guides users towards best practices

– Forced thoroughness on thorny features

• Giving talks about it
– Identified need for more guidance

– Meaning more building blocks



Code-First Techniques

• Code comments
– Write use-case oriented tests
– Document liberally
– IDE support

• Formattable code comments
– Produce external docs like JavaDoc
– But for tutorials, not reference
– Bumblebee

• http://agical.com/bumblebee/bumblebee_doc.html



Prose-First Techniques

• Embedding into external documents
– „Literate Programming“
– Often no IDE support
– Flow might be dictated by code

• Citing into external documents
– IDE support for code, editor support for prose
– Citations may not be visible while writing
– JCite

• http://arrenbrecht.ch/jcite/



Real-Life Experience

• Documented JCite's own extensibility

• First in code-first fashion; found
– Bad terminology
– Bad abstractions forcing user to duplicate code

• Then in prose-first fashion; found
– More bad terminology
– Even some introduced just before



Demo

• Citing and highlighting

• Tripwires

• Ant integration



Considerations

• Code first
– Simple and quick to set up
– Tutorials available directly in IDE

• Prose first
– Clean slate for teaching
– Focus on story, background and goals
– Names are better when created while writing story
– Condense examples, exclude clutter

– Produces polished presentation
– Encourages rereading and refinement



Code-First Recommendations

• Write tests first

• Write test introduction first (clean slate)

• Hide clutter (e.g. in base classes)

• Separate tutorials from technical tests

• Don't misuse JavaDoc for lengthy tutorials
– Refer to tutorial tests instead



Prose-First Recommendations

• Start at high level (system overview, goals)

• Sketch examples directly in text editor at first
– Remain focused on user story

• Cite test assertions
– Does this assertion really test what I'm claiming?

• Cite as much as possible (no copy/paste)

• Return to high level
– How did we address our goals? Link to examples.

• Include in source repository



Caveat Emptor

• Short samples vs. sound API design
– Don't make sample code short at all costs
– Be very wary when adding a convenience API

• Tutorials don't obviate need for doc 
comments

• Not every programmer is good at prose
– Use reviews, have editors
– Give talks, in-house presentations
– But don't evade the thinking involved in teaching



Coming Full Circle

(What this talk taught me)

• How can we integrate external tutorials with 
IDEs?

• I should mandate tutorial-style tests when 
reviewing library code



Links

• JCite
– Cite fragments into HTML documents
– http://arrenbrecht.ch/jcite/

• Bumblebee
– Produce HTML from code comments
– http://agical.com/bumblebee/bumblebee_doc.html

• Literate Testing
– http://arrenbrecht.ch/testing/

Thank you!

http://arrenbrecht.ch/jcite/
http://agical.com/bumblebee/bumblebee_doc.html
http://arrenbrecht.ch/testing/

