Peter Arrenbrecht, codewise.ch
peter.arrenbrecht@gmail.com

Some of us teach them, too

Motivation

AFC has a set of default conventions for the layout of a spreadsheet which, when follo
ensure a certain consistency, and simplify the association of cells to inputs and out
users (they do not have to use cell names). It will be much easier for them to get started with
these conventions if you provide them with ready-made templates.

It also greatly helps your users if they can start with a spreadsheet file that implements the
computation the system is currently configured to perform. (Of course, this is only possible if this
computation can be expressed in terms of a spreadsheet.)

Now, while you could certainly create these initial files by hand in Excel and ship them with your
application, AFC supports generating them at mn-time. This has the following advantages:

= The initial file can be generated in any of the spreadshest file formats supported by AFC, as
desired by the user.

= [If the current computation is almeady customizable (see using AFC without a spreadsheet file],
then generating the initial file for this computation must be done at mn-time.

Generating The Internal Model

We all design APIs

public interface SpreadsheetSaver
{

Jf‘**

* Configuration data for new instances of

* {@link org.formulacompiler.spreadsheet.SpreadsheetSaver}.
*

* ([@author peo
*

* (@see SpreadsheetCompiler#newSpreadsheetSaver(org.formi§
*

public static class Config

{

Jf‘**
* Mandatory intemnal spreadsheet model that should be writtsl
* Normally constructed using a {@link org.formulacompiler.s
*

public Spreadsheet spreadsheet;

And we all test them

AFC generates initial files from its intermal spreadshest model. So in order to generate one, we
first need to build its model in memory. This is exactly the same process as is needed when usin
AFC without a spreadsheet file. See there for details.

Generating The File

Once you have the internal model set up, you can tell AFC to write out a spreadsheet file for it.
There are two flavors of this API. The simpler version automatically deduces the the spreadsheet
file type by the file name extension (.xls, .esd, etc.), and always writes to a file:

Spreadsheet s = buildSpr eadsheet(];
SpremdshestCompiler . saveSpr emdsheet(=, getOutputFile(), null 1;

The other version lets you specify the extension explicitly and returmns the generated spreadshest
a5 a stream:

Spreadsheet = = buildSpr eadsheeti];
ByteArrayOutputStream os = new BytedrrayOutputStreami);

SpremdsheetSaver . Config cfg = new SpreadsheetSaver. Configll;
cfg. spreadshest = =;

cfg. typeExtension = getSpreadsheetExtension(); /f .xls or
cfg. outputStream = os;

SpremdsheetCompi ler . newSpreadsheetSaver (| cfg). savel];

.ods

@Test
public void testGenerateFile() throws Exception

{

}

@Test
public void testGenerateStream() throws Exception

{

/I ---- GenerateFile

Spreadsheet s = buildSpreadsheet!();
SpreadsheetCompiler./**/saveSpreadsheet/**/(s, getOutputFile(), null);
/I ---- GenerateFile

SpreadsheetAssert.assertEqualSpreadsheets(s, new BufferedinputStream/(ne|

/I ---- GenerateStream
Spreadsheet s = buildSpreadsheet();
ByteArrayOutputStream /++/os/**/ = new ByteArrayOutputStream();

SpreadsheetSaver.Config cfg = new SpreadsheetSaver.Config();
cfg.spreadsheet = s;

cfg./**/typeExtension/**| = getSpreadsheetExtension(]; // .x|s or .ods
cfg./**/outputStream/+*/ = 0s;
[+*/SpreadsheetCompiler.newSpreadsheetSaver(cfg).save();/**/

[/ ---- GenerateStream

SpreadsheetAssert.assertEqualSpreadsheets| s, new ByteArraylnputStream(

Tutorials and Examples

This talk is about
* writing tutorials,
* with lots of tested examples

* and how this improves the quality of your
APIs

Writing Tutorials Buys You

e Focus on users and their needs
— Use cases, stories
— Descend from on high

« Broadens view
— Interplay of components
— Entire use cases

 Invites cooperation
— Reviewers, potential users

e Discourages bells and whistles
— They all have to be explained

Giving Examples Buys You

* Consistent and convincing terminology

* Concise user code
— Need a simplified API atop a lower-level one?

* Usage as intended
— Correct and optimal
— Similar code easier to maintain
— Might be easier to refactor later

Testing Examples Buys You

* Completeness
— No hand waving, no shortcuts
* Maintainabillity
— Refactor text around examples too

— Restarts the cycle of reflection induced by focus
on tutorials

* Side benefits (not for your APl as such)
— No broken examples ever
— Important set of tests

Real-Life Experience

* Excel to JVM Compiler
(http:/[formulacompiler.org/)
* Extensive tutorial online
— Led to layered API
— Guides users towards best practices
— Forced thoroughness on thorny features

e Giving talks about it
— Identified need for more guidance
— Meaning more building blocks

Code-First Techniques

* Code comments
— Write use-case oriented tests
— Document liberally
— |IDE support

e Formattable code comments
— Produce external docs like JavaDoc
— But for tutorials, not reference

— Bumblebee
* http://agical.com/bumblebee/bumblebee doc.html

Prose-First Technigques

* Embedding into external documents
— ,Literate Programming“
— Often no IDE support
— Flow might be dictated by code

* Citing into external documents
— |DE support for code, editor support for prose
— Citations may not be visible while writing
—JCite
* http://arrenbrecht.ch/jcite/

Real-Life Experience

* Documented JCite's own extensibility

* First in code-first fashion; found

— Bad terminology

— Bad abstractions forcing user to duplicate code
* Then in prose-first fashion; found

— More bad terminology
— Even some introduced just before

Demo

* Citing and highlighting
* Tripwires
* Ant integration

Considerations

* Code first
— Simple and quick to set up
— Tutorials available directly in IDE

* Prose first
— Clean slate for teaching
— Focus on story, background and goals
— Names are better when created while writing story
— Condense examples, exclude clutter
— Produces polished presentation
— Encourages rereading and refinement

Code-First Recommendations

Write tests first

Write test introduction first (clean slate)
Hide clutter (e.g. In base classes)
Separate tutorials from technical tests

Don't misuse JavaDoc for lengthy tutorials
— Refer to tutorial tests instead

Prose-First Recommendations

e Start at high level (system overview, goals)

* Sketch examples directly in text editor at first
— Remain focused on user story

* Cite test assertions
— Does this assertion really test what I'm claiming?

* Cite as much as possible (no copy/paste)

* Return to high level
— How did we address our goals? Link to examples.

* Include in source repository

Caveat Emptor

* Short samples vs. sound API design
— Don't make sample code short at all costs
— Be very wary when adding a convenience API

 Tutorials don't obviate need for doc
comments

* Not every programmer is good at prose
— Use reviews, have editors

— Give talks, In-house presentations
— But don't evade the thinking involved in teaching

Coming Full Circle

(What this talk taught me)

* How can we integrate external tutorials with
IDES?

* | should mandate tutorial-style tests when
reviewing library code

Links

* JCite
— Cite fragments into HTML documents
— http://arrenbrecht.ch/jcite/

* Bumblebee
— Produce HTML from code comments
— http://agical.com/bumblebee/bumblebee doc.html

* Literate Testing
— http://arrenbrecht.ch/testing/

Thank you!

http://arrenbrecht.ch/jcite/
http://agical.com/bumblebee/bumblebee_doc.html
http://arrenbrecht.ch/testing/

